gninatorch.dataloaders module
- class gninatorch.dataloaders.GriddedExamplesLoader(example_provider, grid_maker, label_pos: int = 0, affinity_pos: int | None = None, flexlabel_pos: int | None = None, random_translation: float = 0.0, random_rotation: bool = False, device: device = device(type='cpu'), grids_only: bool = False)[source]
Bases:
object
Load example and compute atomic density on a grid.
- Parameters:
example_provider (
molgrid.ExampleProvider
) – :package:`molgrid` example providergrid_maker (
molgrid.GridMaker
) – :package:`molgrid` grid makerlabel_pos (int) – Ligand pose annotation label position
affinity_pos (Optional[int]) – Affinity annotation position
flexlabel_pos (Optional[int]) – Receptor (side chains) pose annotation label position
random_translation (float) – Random translation applied to each example on each cartesian axis
random_rotation (bool) – Uniform random rotation applied to each example
device (torch.device) – Device
grid_only (bool) – If True, return only the grid, otherwise return grid and labels
Notes
The batch size is defined in the
example_provider
asdefault_batch_size
. The number of batches actually depend on themolgrid.IterationScheme
used, also defined in theexample_provider
.If
molgrid.IterationScheme.SmallEpoch
is used, examples are seen at most once. Ifmolgrid.IterationScheme.LargeEpoch
is used, examples are seen at least once.The last batch is not padded with examples of the next epoch, in contrast with
molgrid.ExampleProvider
default behaviour.