gninatorch.transforms module
PyTorch-Ignite output transformations.
Note
PyTorch-Ignite output_transform
arguments allow to transform the
Engine.state.output
for the intendend use (by ignite.metrics and
ignite.handlers).
- gninatorch.transforms.output_transform_ROC(output) Tuple[Tensor, Tensor] [source]
Output transform for the ROC curve.
- Parameters:
output – Engine output
- Returns:
Positive class probability and associated labels.
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
https://pytorch.org/ignite/generated/ignite.contrib.metrics.ROC_AUC.html#roc-auc
- gninatorch.transforms.output_transform_ROC_flex(output) Tuple[Tensor, Tensor] [source]
Output transform for the ROC curve (for flexible residues pose)
- Parameters:
output – Engine output
- Returns:
Positive class probability and associated labels.
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
https://pytorch.org/ignite/generated/ignite.contrib.metrics.ROC_AUC.html#roc-auc
- gninatorch.transforms.output_transform_select_affinity(output: Dict[str, Tensor]) Tuple[Tensor, Tensor] [source]
Select predicted affinities output and experimental (target) affinities from output dictionary.
- Parameters:
output (Dict[str, ignite.metrics.Metric]) – Engine output
- Returns:
Predicted binding affinity and experimental (target) binding affinity
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
This function is used as
output_transform
inignite.metrics.metric.Metric
and allow to select affinity predictions from the dictionary that the evaluator returns.
- gninatorch.transforms.output_transform_select_affinity_abs(output: Dict[str, Tensor]) Tuple[Tensor, Tensor] [source]
Select predicted affinities (in absolute value) and experimental (target) affinities from output dictionary.
- Parameters:
output (Dict[str, ignite.metrics.Metric]) – Engine output
- Returns:
Predicted binding affinity (absolute value) and experimental binding affinity
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
This function is used as
output_transform
inignite.metrics.metric.Metric
and allow to select affinity predictions from the dictionary that the evaluator returns.Affinities can have negative values when they are associated to bad poses. The sign is used by
AffinityLoss
, but in order to compute standard metrics the absolute value is needed, which is returned here.
- gninatorch.transforms.output_transform_select_flex(output: Dict[str, Tensor]) Tuple[Tensor, Tensor] [source]
Select flexible residues pose
softmax
output and labels from output dictionary.- Parameters:
output (Dict[str, ignite.metrics.Metric]) – Engine output
- Returns:
Class probabilities and class labels
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
This function is used as
output_transform
inignite.metrics.metric.Metric
and allow to select pose results from the dictionary that the evaluator returns.The output is activated, i.e. the
log_softmax
output is transformed intosoftmax
.
- gninatorch.transforms.output_transform_select_log_flex(output: Dict[str, Tensor]) Tuple[Tensor, Tensor] [source]
Select flexible residues pose
log_softmax
output and labels from output dictionary.- Parameters:
output (Dict[str, ignite.metrics.Metric]) – Engine output
- Returns:
Logarithm of the pose class probabilities (
log_softmax
) and class label- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
This function is used as
output_transform
inignite.metrics.metric.Metric
and allow to select pose results from the dictionary that the evaluator returns.The output is not activated, i.e. the
log_softmax
output is returned unchanged
- gninatorch.transforms.output_transform_select_log_pose(output: Dict[str, Tensor]) Tuple[Tensor, Tensor] [source]
Select pose
log_softmax
output and labels from output dictionary.- Parameters:
output (Dict[str, ignite.metrics.Metric]) – Engine output
- Returns:
Logarithm of the pose class probabilities (
log_softmax
) and class label- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
This function is used as
output_transform
inignite.metrics.metric.Metric
and allow to select pose results from the dictionary that the evaluator returns.The output is not activated, i.e. the
log_softmax
output is returned unchanged
- gninatorch.transforms.output_transform_select_pose(output: Dict[str, Tensor]) Tuple[Tensor, Tensor] [source]
Select pose
softmax
output and labels from output dictionary.- Parameters:
output (Dict[str, ignite.metrics.Metric]) – Engine output
- Returns:
Class probabilities and class labels
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Notes
This function is used as
output_transform
inignite.metrics.metric.Metric
and allow to select pose results from the dictionary that the evaluator returns.The output is activated, i.e. the
log_softmax
output is transformed intosoftmax
.